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Introduction

For economical reasons, the size of civilian airplanes has recently
increased quite significantly while limiting mass augmentation as
far as possible.

Consequently, aircrafts have become “more flexible” so that :

Flexible modes have progressively appeared in the control
bandwidth,

Active control has then become necessary to manage the
interactions between these new modes and the “classical”
ones which we associate to the rigid part of the aircraft.
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Introduction

Such Active Control design methods are generally based on
heuristic schemes. Moreover, the design is necessarily performed on
a simplified model which only includes a few flexible modes.

Consequently, preservation of stability and performances - i.e
robustness - on the full model has to be checked a posteriori.

The main objective of this talk is to present a new method to
perform this Robustness Analysis which :

avoid intensive Monte-Carlo simulations,

provides guaranteed robustness margins,

is not too conservative,

still works on high-order systems with numerous uncertainties,

runs as fast as possible for possible inclusion in a design
process
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Introduction

More precisely, the practical problem to be solved consists in
analysing the robustness properties of a flight control system of a
flexible transport aircraft with parametric uncertainties :

in the rigid part of the model (aerodynamic uncertainties),

in the natural frequencies of the bending modes

We want to compute an estimate of the maximal size of
uncertainty which preserves stability. This is the Robustness
Margin.

Our approach is based on the important notion of Structured
Singular Value (SSV), denoted µ.
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Introduction to µ analysis

Standard interconnection structure

M(s)

∆

∆ = diag (∆1(s), . . . , ∆q(s), δ1In1
, . . . , δr Inr

) ∈ kB∆

where B∆ denotes the unit ball :

B∆ = {∆ / σ(∆) ≤ 1}
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Introduction to µ analysis

Definition of µ

µ∆(M ) = 1/min(k / ∃∆ ∈ kB∆ with det(I −M∆) = 0)
= 0 if no (k, ∆) exists

Robustness margin

1

kmax

= max
ω∈[0,∞]

µ(M (jω))
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Introduction to µ analysis

Main difficulties

The exact computation of µ is generally NP-hard,

Evaluating the robustness margin involves a computation of µ
for each frequency point inside the range of interest.

Classical solutions

µ upper-bound computation via polynomial-time algorithms,

Maximum value research over the frequency range :

by using a frequency gridding (not reliable in case of highly
flexible modes),
by considering frequency as a repeated parametric uncertainty
(not applicable for high order systems),

Computation of a µ lower-bound to evaluate conservatism :

global µ lower-bound,
frequency-dependent µ lower-bound
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Introduction to µ analysis

Our proposed solution : a general view

Compute a “local” µ upper-bound using light adaptations of
standard algorithms,

Compute (by an exact method) all frequency segments where
the above upper-bound is valid,

Eliminate these frequency segments and go back to first step.

Stop when the whole frequency range has been covered.

Estimate conservatism by a global µ lower-bound computation
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Computation of a reliable µ upper-bound

Computation at a single frequency point
LMI-based formulation :

Given scaling matrices D ∈ D and G ∈ G :

M ∗DM + j(GM −M ∗G) ≤ β2D ⇒ µ∆(M ) ≤ β

Singular-value based formulation :

Given scaling matrices D ∈ D̂ and G ∈ Ĝ, denote F = I + G2,
then :

σ

(

F−1/4

(

DMD−1

β
− jG

)

F−1/4

)

≤ 1⇒ µ∆(M ) ≤ β
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Computation of a reliable µ upper-bound

Remarks about the above two formulations

Both formulations are equivalent.

The first one leads to a convex optimization problem (gevp),
and is implemented in LMI control toolbox of Matlab. This
implementation is slow in case of largely repeated
uncertainties,

The second formulation forms the basis of an algorithm based
on “power-iterations” and is implemented in the µ Analysis
and Synthesis Toolbox. According to the options, this
implementation may be more conservative. Yet, the
computation is performed much faster,

Both implementations are optimal for a fixed frequency point.
Therefore, the scaling matrices D and G may not be robust
versus frequency variations.
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Computation of a reliable µ upper-bound

Simultaneous Computation at several frequency points
Consider two close frequency points ω1 and ω2, and denote M1

and M2 the associated frequency responses of the system.

Using the LMI-based formulation :

This formulation can be easily generalized. We now simply have
two matrix inequalities instead of one :

{

M ∗

1 DM1 + j(GM1 −M ∗

1 G) ≤ β2D

M ∗

2 DM2 + j(GM2 −M ∗

2 G) ≤ β2D
⇒

{

µ∆(M1) ≤ β
µ∆(M2) ≤ β

12 / 30ROBUSTNESS ANALYSIS OF FLEXIBLE AIRPLANES (J-M. BIANNIC)



Computation of a reliable µ upper-bound

Simultaneous Computation at several frequency points

Using the SV-based formulation :

We propose a simple two-steps procedure :

Step 1 : Using the power-algorithm, compute β0, D and G

on M0 = (M1 + M2)/2,

Step 2 : For fixed D and G, compute β ≥ β0 such that :

σ

(

F−1/4

(

DMiD
−1

β
− jG

)

F−1/4

)

≤ 1 (∗)

by using a simple technical result (see next slide).
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Computation of a reliable µ upper-bound

Simultaneous Computation at several frequency points

A technical result for Step 2

Denote Ui = F−1/4DMiD
−1F−1/4 and V = −jG(I + G2)−1/2.

Further define β̂ as the largest positive real such that :

det

([

0 Ui

U ∗

i 0

]

+ β̂

[

I V

V ∗ I

])

= 0 (∗∗)

then, for all β ≥ β̂ the inequality (*) holds.
�

Note that the above result is computationaly attractive since
all solutions of (**) can be easily found by computing
generalized eigenvalues.
A tolerance parameter ǫtol can be defined to decide when ω1

and ω2 are not close enough, i.e :
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Validity of a frequency segment

A preliminary illustration

^
4ω321ω̂ ω̂ω̂

D,G
ν

β
ω1 ω2
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Validity of a frequency segment

A related technical result

Given ω1, ω2, β, D and G as introduced above, define
ω0 = (w1 + w2)/2 then there exists an augmented matrix H(ω0)
whose real eigenvalues η1, . . . , ηq have the following property :

∀k = 1, . . . , q ∃i such that :

σi

(

F−1/4

(

DM (jω̂k)D−1

β
− jG

)

F−1/4

)

= 1

with :

ω̂k = ω0 +
1

ηk

�
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Validity of a frequency segment

Corollary

Consider the frequency segment Ik = [ω̂k ω̂k+1], and define a
frequency point ω̌k strictly inside. If

σ

(

F−1/4

(

DM (jω̌k)D−1

β
− jG

)

F−1/4

)

≤ 1

then, it holds true ∀ω ∈ Ik .
�

17 / 30ROBUSTNESS ANALYSIS OF FLEXIBLE AIRPLANES (J-M. BIANNIC)



Proposed algorithm

Define an initial frequency gridding {ω1, ω2, . . . , ωN} and generate
the associated set of intervals :

I = {Ik = [ωk , ωk+1] , k = 1, . . . , N − 1}

then repeat the following steps while I is not empty :
1 Consider an interval Ik of I and denote ωk = (ωk + ωk+1)/2,
2 By the two-step procedure, compute βk , Dk and Gk which are

simultaneously valid for ωk and ωk+1,
3 If βk − β0k

> ǫtol , add the central point ωk to the gridding,
update I and go back to first step. Otherwise, update βmax :

βmax ← max(βmax , βk)

4 Compute the set J of frequency intervals inside which βmax ,
Dk and Gk are valid,

5 Update I by removing all intervals of J :

I ← I − J
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Proposed algorithm

Possible improvements

Improving accuracy by switching to the LMI technique on
most critical frequency segments,

Reducing computational-time by first computing a µ
lower-bound (µL) and then initializing βmax :

βmax ← µL
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Application to the flexible aircraft

Model description

yf

ry

y
u

Actuator

+

+

Flexible model

Rigid Model

Rigid part :

Linearized lateral model with uncertainties in the 14 stability
derivatives :

β̇ = Yββ + (Yp + sinα0)p + (Yr − cosα0)r + g
V

φ + Yδpδp + Yδrδr

ṗ = Lββ + Lpp + Lrr + Lδpδp + Lδrδr

ṙ = Nββ + Npp + Nrr + Nδrδr

φ̇ = p + tanθ0 r
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Application to the flexible aircraft

Model description

Flexible part

The 12th order flexible model contains 6 poorly damped bending
modes, which caracteristics are summarized in the following table :

damping ratio natural frequency (rad/s)

1 1.56 10−2 14.3

2 2.16 10−2 13.5

3 2.42 10−2 12.5

4 3.29 10−2 7.35

5 5.07 10−2 14.1

6 5.09 10−2 8.62
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Application to the flexible aircraft

Controller design

We used an observer-based state-feedback control law. The idea is
simply to place the rigid closed-loop poles to achieve performances
and decoupling objectives. Then 4 flexibles modes are actively
controlled (they are shifted into the LHP in order to improve their
damping). Moreover, roll-off filters are added to the design model
in order to increase the robustness properties of the control law
versus unmoddelled dynamics.
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Application to the flexible aircraft

LFT for the closed-loop
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Application to the flexible aircraft

Global and scaled LFT

Size of      : 20∆M(s)

Controller
&

Aircraft 

∆α f

rα

f∆
r∆

Plant order : 46

∆ = diag (δr1
, . . . δr14

, δf1 , . . . , δf6)

Scaling parameters αr and αf are tuned in a way that if the
robustness margin of the system is less than one, then the
maximum uncertainty levels are :

10% on the stability derivatives
20% on the natural frequencies of the bending modes
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Application to the flexible aircraft

Application of the routine : mub = mu_max_3(sys,blk) ;

Initial steps : 13 s LMI steps : 5 s

Iter. Remaining Int. µ so far reliability

1 20 0 0%
2 21 0 0%
3 22 0.88 0.14%

. . . . . . . . . . . .
25 15 1.67 12.6%
. . . . . . . . . . . .
37 5 2.41 100%

1 1 2.34 0%
2 2 2.34 50%
3 1 2.34 100%
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Application to the flexible aircraft

A graphical illustration of the results :
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Application to the flexible aircraft

A more precise computation ...
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Application to the flexible aircraft

A classical gridding-based approach with 500 points
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Application to the flexible aircraft

Conclusion on the methods

Using our method, an accurate and reliable µ upper-bound
was found in less than 20 s despite the complexity of the
problem,

A classical gridding-based approached failed : The peak was
missed despite the fine gridding we used. Furthermore,
computational-time is higher.

Conclusion about the FCS

We have proved that the FCS can tolerate an uncertainty of :

4.25 % in the stability derivatives,

8.5 % in the natural frequencies of the bending modes.

which is rather lower and suggests that the controller should be
further tuned.
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Conclusion

A new, fast and reliable method has been presented to
evaluate the robustness margin of a system in presence of
parametric uncertainties and/or neglected dynamics.

It works on high-order badly-dampled systems with numerous,
possibly largely repeated uncertainties.

It is available as part of the Skew-µ Toolbox (SMT) :

http ://www.onera.fr/staff/jean-marc-biannic
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