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Introduction

How to manage complexity in robustness analysis ?

In industrial problems, sophisticated models with high level parameters
are often encountered (e.g. a rigid / flexible airplane depending on
Mach, dynamic pressure and filling degrees of the tanks. . . ). This
leads to high complexity LFT models, with many highly repeated
parameters.
When analyzing an uncertain closed-loop plant, possibly augmented
with multipliers, the order of the representation may be too high for
LMI state-space solutions.
LFT complexity is to be minimized at each step of the modelling phase.
Keeping a reasonable computational burden despite the unavoidable
complexity of the problem:

numerous and highly repeated parameters,
high order models (because of flexible modes, dynamic multipliers,
weighting functions,...)

typically requires "KYP Lemma free" and possibly "LMI free" methods
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Introduction

On "KYP Lemma & LMI free" methods

Whatever the framework (using multipliers such as µ/IQC based
techniques or involving Lyapunov functions), a robustness analysis
problem often leads to a minimization problem under an infinite set
of LMI constraints.

The KYP Lemma is a powerful tool thanks to which the above problem
is solved by considering a single state-space constraint. However,
this relaxation technique introduces numerous scalar variables.
In this talk, to limit the number of constraints without introducing any
slack variable, we focus on a two-step procedure:

Optimization on a frequency or parametric grid
Validation between grid points

When possible, LMI techniques are to be avoided in the first step.
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LFR modelling

Definition of uncertain or varying parameters
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θi = θi ,C + sθi δθi

with

θi ,C =
θi ,max + θi ,min

2

sθi =
θi ,max − θi ,min

2
δθi ∈ [−1, 1]

∆ = diag(δθ1 Ik1 , . . . , δθn Ikn , . . .

∆NL,l1 , . . . , ∆NL,lo , . . .

∆m1(s), . . . , ∆mp )

The size of an LFR is the size of the matrix ∆.
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LFR modelling

Basic transformations for LFR modelling (1/4)

LFR modelling seems to be a straightforward activity.
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LFR modelling

Basic transformations for LFR modelling (2/4)
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LFR modelling

Basic transformations for LFR modelling (3/4)

But you can considerably reduce the size by a good symbolic
pre-processing, here a factorization to the left.
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LFR modelling

Basic transformations for LFR modelling (4/4)

d- -

- -

-

-

-?Cc
u

z1sC
w1

++
D

y1

y2

-

- -

-
-

u
. M(s)

w1 z1

y1
y2

⇐⇒

∆ =
[
δC

]
This operation is
done by the LFR
Toolbox functions
sym2lfr and/or
symtreed.
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LFR modelling

Problem statement

In the analytical model description, the following elements appear
very frequently:

1 Look-up tables:
Model coefficients often depend on system parameters, for example
Cyr (M, α), Vtas(Vcas ,M).
Controller gains are scheduled with respect to some measurements, for
example K1(xcg ) or K2(Vcas).

2 Functions: exponential, trigonometrical, irrational, piece-wise
(non-)linear

Or, the system is described by a family of linearized models (A(∆i ),
B(∆i ), C(∆i ), D(∆i )) where ∆i describe the trim conditions. The
consistency of the state vectors must first be ensured (modal
truncation, reordering) in order to ensure smooth trajectories of the
eigenvalues. The continuum of the frequency responses is improved
by biconvex optimization.
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LFR modelling

Rational interpolation & LFR modelling (1/3)

In order to come up with low-order LFRs, the non-rational data must
be replaced by rational or polynomial expressions of minimum order
and/or with a minimum number of monomials before being
transformed into LFRs.

Polynomial interpolations are performed:

z(δ) =

np∑
k=1

γkpk (δ)

where (pk )k∈[1,np ] is a set of multivariate monomials and (γk )k∈[1,np ] are
parameters to be determined.
Usually, this problem is solved by minimizing the quadratic error (Least Square):

J(Γ) = (Z − PΓ)T (Z − PΓ)
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LFR modelling

Rational interpolation & LFR modelling (2/3)

If orthogonal modelling functions such that Pi Pj = 0 ∀i 6= j are used, then the
minimum value Jopt of J(Γ) is given by:

Jopt = Z T Z −
np∑

k=1

(PT
k Z)2

PT
k Pk

The reduction in the Least Squares criterion J(Γ) resulting from the inclusion of
the term γkpk (δ) does not depend on pj (δ) whatever j 6= k. This allows to
evaluate each monomial in terms of its ability to reduce J(Γ), regardless of
which other monomials are selected.

12 / 52
LFT modelling & robustness analysis

N



LFR modelling

Rational approximation & LFR modelling (3/3)

data2sym.m uses a classical Least Square approach.

data2poly.m exploits the Orthogonal Least Square of the previous
slide to reduce the LFR complexity.

In order to reduce even more the LFR complexity, rational
approximation has very recently been dealt with using either
Levenberg-Marquardt algorithms or quadratic programming on the one
hand and Radial Basis Function (RBF) neural networks or Particle
Swarm Optimization (PSO) on the other hand. The function
data2rat.m will soon be added to the LFR toolbox.
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LFR modelling

Examples for polynomial approximation (1/2)
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(a) Approximation
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(b) Approximation error

A 4th-order polynomial is needed in order to satisfy εmax ≤ 2% on the
whole Vcas -range [185, 320] kts :

K̂ = c0 + Vcas {c1 + Vcas [c2 + Vcas (c3 + c4 Vcas)]}
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LFR modelling

Examples for polynomial approximation (2/2)
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(c) Initial data
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(d) Approximation
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(e) Approximation error

Ĉyr = c0 + c1M + c2 α + c3M2 + c4Mα +

+ c5M3 + c6M2α + c7M4 + c8M3α +

+ c9M5 + c10M4α

for a chosen maximum error εmax = 10%.
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LFR modelling

LFRs for rate limiters and position saturations (1/2)
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LFR modelling

LFRs for rate limiters and position saturations (2/2)

f qf fq
-

?

-

?--
�
��
HH

H
-

6

-- -

��
�� ��

��

δqc 1/T+

−
1/s δE ,c++

− −
dead-zone dead-zone

(h) Intermediate implementation of both saturations as dead-zones

f q--
��
�
HH

H
-

6

-- -
-

�

-

�

δqc 1/T+

−
δE ,c

MRδE,c
MDδE,c1/s

RδE,c DδE,c

(i) LFR implementation

∆ = DZ(z)

M =

(
0 1
−1 1

)

17 / 52
LFT modelling & robustness analysis

N



LFR modelling

A closed-loop system (1/2)
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LFR modelling

A closed-loop system (2/2)
slk2lfr.m opens the loops before and after the ∆i introducing the artificial inputs wi and outputs zi , reorders them in
a block-diagonal form ∆cl , and finally linearizes the system in order to obtain the state space representation:

ẋ = A x +
[

B1 B2
]︸ ︷︷ ︸

B

(
w
u

)
(

z
y

)
=

[
C1
C2

]
︸ ︷︷ ︸

C

x +

[
D11 D12
D21 D22

]
︸ ︷︷ ︸

D

(
w
u

)
of the nominal system and repartitions (A, B, C , D) such that(

ẋ
z

)
=

[
A B1
C1 D11

]
︸ ︷︷ ︸

M11

(
x
w

)
+

[
B2
D12
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M12

u
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M21
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Robustness analysis vs LTI uncertainties

Problem statement
Let M(s) be a stable LTI plant and ∆ a time-invariant uncertainty matrix
with a given structure ∆. Let B(∆) = {∆ ∈ ∆ : σ(∆) < 1}.

Problem 1: robust stability

-

�

M(s)

∆

Compute the maximum value
kmax s.t. the interconnection is

stable ∀∆ ∈ kmaxB(∆)

Problem 2: robust H∞ performance

�

-

- -
w z

yyr

∆

M

If robust stability is ensured, compute
γmax = max

∆∈B(∆)
‖Fu(M(s),∆)‖∞

20 / 52
LFT modelling & robustness analysis

N



Robustness analysis vs LTI uncertainties

Brief introduction to µ-analysis

Structured singular value µ
The s.s.v. µ(M(jω)) is the inverse of the size σ(∆) of the smallest
perturbation ∆ ∈ ∆ satisfying det(I −∆M(jω)) = 0. The robustness
margin kmax is thus obtained as:

kmax =
1

max
ω∈R+

µ(M(jω))

In the general case, the exact computation of µ(M(jω)) is NP hard. A
classical strategy consists of:

computing an upper bound µUB using polynomial-time algorithms to
obtain a guaranteed value of the robustness margin,

computing a lower bound µLB to evaluate conservatism.
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Robustness analysis vs LTI uncertainties

Computation of a µ upper bound
Computing a guaranteed robustness margin involves the computation of a µ
upper bound for each frequency → infinite-dimensional problem.

Characterization of a mixed-µ upper bound
Let β be a positive scalar. If there exist matrices D ∈ D and G ∈ G s.t.:

σ

(
(I + G2)−1/4

(
DM(jω)D−1

β
− jG

)
(I + G2)−1/4

)
≤ 1

where D = {D ∈ Cm×m : det(D) 6= 0 and ∀∆ ∈ ∆,D∆ = ∆D} and
G = {G ∈ Cm×m : ∀∆ ∈ ∆,G∆ = ∆∗G}, then µ(M(jω)) ≤ β.

Two classical strategies:
using a frequency grid → not reliable, especially in case of flexible systems
(over-evaluation of the robustness margin)
considering frequency as a repeated parametric uncertainty → not applicable
for high-order systems (computational burden)
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Robustness analysis vs LTI uncertainties

Key idea of the method
A µ upper bound βi and matrices Di ,Gi are computed for a frequency ωi .

βi ← (1 + ε)βi is then slightly increased to enforce a strict inequality:

σ

(
(I + G2)−1/4

(
DM(ωi )D−1

βi
− jG

)
(I + G2)−1/4

)
< 1

The key step is to compute the largest frequency interval I(ωi ) 3 ωi s.t.:

∀ω ∈ I(ωi ), σ

(
(I + G2)−1/4

(
DM(ω)D−1

βi
− jG

)
(I + G2)−1/4

)
≤ 1

βi is thus a guaranteed µ upper bound on the whole frequency interval
I(ωi ), and not only for a single frequency ωi .
The determination of the above frequency segment can be achieved by
computing the eigenvalues of a Hamiltonian-like matrix.
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Robustness analysis vs LTI uncertainties

Algorithmic issues
The resulting algorithm consists of an initialization phase followed by a
repeated treatment on a list of intervals.

1 Initialization phase:
(a) Set βmax = 0.
(b) Initialize the list of frequency intervals I to be investigated, for

example I = {Ω1} = {[ωmin, ωmax ]}.

2 While I 6= ∅, repeat:
(a) Select an interval Ωi ∈ I and choose a pulsation ωi ∈ Ωi .
(b) Apply the aforementioned procedure.
(c) Set βmax ← max(βi , βmax ).
(d) Update I by eliminating I(ωi ) from the list: I ← I r I(ωi )

βmax is progressively increased while the frequencies in I are eliminated. At
the end, kUB = 1/βmax is a guaranteed robustness margin on [ωmin, ωmax ].
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Robustness analysis vs LTI uncertainties

Extensions to performance analysis

Modal performance. It suffices to compute a µ upper
bound on the borderline of a truncated sector.

ω
c

α

Φ

H∞ performance. These statements are equivalent:

1 γmax = max
∆∈B(∆)

‖Fu(M(s),∆)‖∞ ≤ γ,

2 the size σ(∆c ) of the smallest perturbation ∆c = Cp×p

s.t. det(I −M(jω)diag(∆,∆c )) = 0 for some ∆ ∈ B(∆)
and some ω ∈ R+ is larger than 1/γ,

3 µ
(
diag(I, I/√γ)M(jω)diag(I, I/√γ)

)
≤ 1 ∀ω ∈ R+.

�

-

�

- ye

∆

M(s)

∆c
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Robustness analysis vs LTI uncertainties

Extensions to performance analysis

H∞ performance (cont’d). For a given ωi , the smallest value of γ s.t.
µUB

(
diag(I, I/√γ)M(jωi )diag(I, I/√γ)

)
< 1 can be computed:

– either directly using an LMI characterization of µUB ,

– or iteratively (dichotomy or fixed-point) using the σ one.

The aforementioned algorithm can thus be applied to compute an upper
bound γLB on the robust H∞ performance γmax .

Note that the proposed algorithm can be further extended to general
skew-µ problems where ∆c is structured.
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Robustness analysis vs LTI uncertainties

Computation of a µ lower bound

Main features of existing methods (power algorithm, gain-based algorithm):

+ constructive heuristics which compute worst-case uncertainties,
– frequency is fixed ⇒ worst-cases can be missed even with a fine grid,
+ good results in the complex and mixed cases (fast and accurate),
– convergence problems in the purely real case (lower bound equal to 0).

Key idea of the proposed method: to obtain in polynomial time a tight µ
lower bound over the whole frequency range rather than at a fixed frequency.

⇒ first search a perturbation ∆ which brings one pole of the system near a
chosen frequency point on the imaginary axis (good initial guess),

⇒ then consider ∆ as a fictitious feedback gain allowing to move this pole
freely through the imaginary axis to obtain a destabilizing perturbation.
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Robustness analysis vs LTI uncertainties

Algorithmic issues
A 2-step procedure is performed at each point ωi of a rough frequency grid:

1 apply the power algorithm to a regularized µ problem obtained by adding a
small amount ε of complex uncertainties ∆C to the real uncertainties ∆R :

Mreg (jωi ) =

[
M(jωi )

√
εM(jωi )√

εM(jωi ) εM(jωi )

]
and ∆reg = diag(∆R ,∆C )

2 extract the real part ∆∗R of the resulting worst-case, then compute a matrix
∆̃R which moves one pole of the closed-loop dynamics A + B(∆∗R + ∆̃R )C
through the imaginary axis while minimizing σ

(
∆∗R + ∆̃R

)
.

Step 2 can be recast as a linear programming problem.
The imaginary axis can be crossed at a point jω̃i 6= jωi . Note that ω̃i usually
corresponds to a peak value on the µ plot ⇒ tight lower bound.
Another algorithm has been developed to handle mixed uncertainties.
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Robustness analysis vs LTI uncertainties

Extensions to performance analysis

Modal performance. A model perturbation is computed which brings a
pole of A + B(∆∗R + ∆̃R)C on the borderline of a truncated sector.

H∞ performance. In the spirit of the µ lower bound algorithm, a two-
step procedure is performed at each point ωi of a rough frequency grid:

1 investigate the unit ball B(∆) by iteratively:
computing the gradient of σ(Fu(M(jωi ),∆))
performing a line search to maximize this quantity (which boils
down to computing the eigenvalues of a Hamiltonian-like matrix)

until the problem is roughly solved at ωi .

2 using the value of ∆ computed at step 1 as an initialization, repeatedly
solve a quadratic programming problem, which locally maximizes
σ(Fu(M(jω),∆)) with respect to both ∆ and ω, until convergence.
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Robustness analysis vs LTI uncertainties

Extension to unstructured margins
Gain, phase, modulus and time-delay margins for an uncertain system.

∆Σ

Σ(s)K(s)

∆K

u y

δM

δM

Input margin

Output margin

⇒ Input or output margins

⇒ SISO or MIMO margins

SISO: δM = diag(I, δM,i , I)
MIMO: δM = diag(δM,1, . . . , δM,p)

The nature of the uncertainties δM,i depends on the considered margin:
Gain margin: δM,i = 1 + δi , δi ∈ R
Modulus margin: δM,i = 1 + δi , δi ∈ C
Phase margin: δM,i = ejφi , φi ∈ R
Time-delay margin: δM,i = e−τi s , τi ∈ R+
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Robustness analysis vs LTI uncertainties

Extension to unstructured margins

Non-rational elements must be replaced by rational functions to get an LFR:

phase margin: ejφi replaced by 1−jδi
1+jδi

, δi ∈ R (bilinear transformation)
time-delay margin: e−τi s replaced by a static complex function f (δi ),
δi ∈ R: for a given margin τ i , the variation range of δi depends on ω.

M(s)

∆̃ =

(
∆unc 0
0 δM

)

∆unc = diag(∆K ,∆Σ)

The computation of unstructured margins is
transformed into a skew-µ analysis problem:

Compute the maximum value of σ(δM) such
that the LFR Fu(M(s), ∆̃) is robustly stable for
all ∆unc such that σ(∆unc) ≤ 1.

Worst-cases and guaranteed margins are obtained with the previous algorithms.
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Robustness analysis vs LTI uncertainties

Towards a reduced conservatism
Definition of conservatism η

Relative gap η =
xUB − xLB

xLB
between lower and upper bounds on x = µ or γ.

η can be very high, notably in presence of highly repeated real uncertainties.

Illustration: Closed-loop longitudinal flexible aircraft. 32 states, 2 real
uncertainties CT and OT ∈ [−1 1] (filling levels of central and outer tanks).

∆ =

(
CT I28 0

0 OT I16

)
Analysis of the robust H∞ performance between vertical wind velocity wz
and load factor Nz .

γUB = 5132, γLB = 165 ⇒ conservatism η > 3000% !!!
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Robustness analysis vs LTI uncertainties

Towards a reduced conservatism

Idea
Partition the uncertainties domain D and perform the analysis on each
subdomain.

Partition D into Da and Db by cutting
along the CT axis:

γUB = max
(
γDa

UB , γ
Db
UB

)
= 593

The conservatism η is now equal to 260%
(instead of 3000%).

η strongly reduced by partitioning D.

D

Da Db

CT

OT

−1 1

1
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Robustness analysis vs LTI uncertainties

Towards a reduced conservatism

Branch and Bound algorithm
Iterate this partitioning until a specified conservatism ηtol is reached.

At each step, the domains Di for which γDi
UB > (1 + ηtol )γLB are partitioned.
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Robustness analysis vs LTI uncertainties

Towards a reduced conservatism
Branch and Bound algorithm: reduction of computational cost

At step N, for the uncertainty domain DN , the condition η ≤ ηtol can
be validated for a part ΩV of the frequency domain Ω.

At step N + 1, the robustness analysis is only performed inside the
frequency domain ΩI = Ω− ΩV and on a subdomain of DN .
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⇒ This strategy reduces the analysis
to the critical frequency intervals.
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Robustness analysis vs LTI uncertainties

Application: robust stability analysis

Description of the model
Longitudinal model of a flexible
passenger aircraft:

22 states

4 parameters characterizing the
aircraft mass configuration:
+ CT and OT filling levels of

the central and outer tanks
+ PL embarked payload

+ XCG gravity center position

∆ = diag(CT I48,OT I28,PL I15,XCG I4)
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Robustness analysis vs LTI uncertainties

Application: robust performance analysis
H∞ performance from vertical wind velocity wz to vertical load factor Nz .
Analysis performed on 3 frequency bands (looking for secondary peaks).

Bode Diagram
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blue → robust performance bounds (ηtol = 20%)
black → frequency responses on a tight parametric grid
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Robustness analysis vs LTI uncertainties

Application: robust unstructured margins

SISO case - margins at the system input
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Robustness analysis vs LTV uncertainties

A "µ-inspired" approach

Let M(s) be a stable LTI plant. Let ∆ = diag(∆TI ,∆TV ) be composed of
time-invariant and arbitrarily fast time-varying structured uncertainties.

Robust stability problem: compute the maximum value kmax s.t. the
interconnection M(s)−∆ is stable ∀∆ ∈ kmaxB(∆).

Let β > 0. If there exist matrices D(ω) = diag(DTI(ω),DTV ) ∈ D and
G(ω) = diag(GTI(ω),GTV ) ∈ G s.t. ∀ω ∈ R+:

M∗(jω)D(ω)M(jω) + j(G(ω)M(jω)−M∗(jω)G(ω)) < β2D(ω)

then kmax ≥ 1/β.

Contrary to the LTI case, it is impossible to independently solve the problem
at each frequency (DTV and GTV must be constant ∀ω ∈ R+).
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Robustness analysis vs LTV uncertainties

Computing a guaranteed stability margin
First approach: frequency-domain algorithm

1 Define a coarse frequency grid (ωi )i∈[1,N] of [ωmin, ωmax ].
2 Solve a finite dimensional optimization problem on the grid, i.e.

minimize β s.t. ∀i ∈ [1,N]:

M∗(jωi )D(ωi )M(jωi ) + j(G(ωi )M(jωi )−M∗(jωi )G(ωi )) < β2D(ωi )

3 With DTV and GTV being fixed, slightly increase β and validate the
result on the whole frequency range using the same frequency
elimination technique as for the µ upper bound computation.

4 If validation fails, add a worst-case frequency to the grid and go back
to step 2. Otherwise, stop.

At the end, kUB = 1/β is a guaranteed robustness margin on [ωmin, ωmax ].
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Robustness analysis vs LTV uncertainties

Computing a guaranteed stability margin
Second approach: time-domain algorithm

Assumption: DTI and GTI are constant on the whole frequency range.

Let M(s) = C(sI − A)−1B +D0. Let β > 0. If there exist matrices
D = diag(DTI ,DTV ) ∈ D, G = diag(GTI ,GTV ) ∈ G and Z = R + jS, where
R = R∗ and S = S∗ ≥ 0, s.t.:[ A∗Z + Z∗A Z∗B − jC∗G C∗D

B∗Z + jGC − β2D + j(GD0 − D∗0 G) D∗0 D
DC DD0 − D

]
≤ 0

then kmax ≥ 1/β.

1 Solve the aforementioned LMI.
2 With DTV and GTV being fixed, apply the µ upper bound algorithm to

compute frequency-dependent DTI and GTI .
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Robustness analysis vs LTV uncertainties

IQC-based analysis
General comments

"The" generalization of µ analysis to a (much) richer class of
problems: analysis of the standard interconnection structure M(s)-∆,
where ∆ contains neglected dynamics, uncertain/scheduling
parameters (LTI or time-varying, with or without a bound on the rate
of variation), delays, generic non-linearities inside a sector (with or
without a restriction on its slope), specific non-linearities for which a
particular IQC description is developed.

Classical state-space LMI solution with the KYP Lemma. IQC toolbox
by Kao, Megretski, Jonsonn, Rantzer.

Untractable when the order of the augmented closed loop with
multipliers is too high. Two solutions have been proposed in the
literature.
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Robustness analysis vs LTV uncertainties

IQC-based analysis
Proposed solutions in the literature

KYDP: a dedicated solver by Wallin, Hanson and others.
A frequency domain cutting plane solution (Kao)

Use of a cutting plane technique to solve the optimization problem on
a frequency grid (convex constraints are iteratively approximated by
linear constraints)
Validation between the grid points using an Hamiltonian-like solution.

At ONERA...
A variation is under development: LMI optimization on a frequency
grid and validation between the grid points. Optimizing w.r.t. matrix
variables can be much more efficient than optimizing w.r.t. scalar
variables.
OK for dealing with the complexity of the state-space representation.
But what about the highly repeated parametric uncertainties ?
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Time-varying Lyapunov functions offer a nice and flexible framework
for stability and performance analysis of LPV plants. They will often
outperform time-invariant functions by permitting the introduction of
bounds on the rate-of-variations of the parameters. But they will also
lead to much more complex conditions. We focus here on a possible
way to manage with the complexity of such conditions.

Let us consider first a simple LPV closed-loop model which depends
on a single parameter δ such that δ(t) ∈ I and δ̇(t) ∈ J :

ẋ = Ac(δ(t))x (1)

with:
Ac(δ(t)) = D + δ(t)C(Iq − δ(t)A)−1B (2)
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Stability of (1) for any admissible trajectory of δ is guaranteed
whenever there exists a PDLF V (x , δ) = x ′P(δ)x such that:

∀(δ, ν) ∈ I × J ,
{

P(δ) > 0
Ac(δ)′P(δ) + P(δ)Ac(δ) + ν ∂P

∂δ (δ) < 0 (3)

Focusing on a polynomial dependance
P(δ) = P0 + δP1 + . . .+ δrPr (4)

we get
∀δ ∈ I , F (δ,P) = diag (−P(δ),Ψ(δ, ν),Ψ(δ, ν))< 0 (5)

with

Ψ(δ, ν) =
r∑

i=0
δi (Ac(δ)′Pi + PiAc(δ)) + ν

r∑
i=1

iδi−1Pi (6)
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
As we did before in the frequency domain, we grid the parametric
interval I so that the infinite set of inequalities in (5) becomes:

F (δi ,P) < 0 , i = 1, . . . ,N (7)

The above conditions are:
numerically tractable (LMIs w.r.t. P0,P1,. . . ,Pr ).
non conservative ((5) ⇒ (7))

But, they must be tested a posteriori on the continuum. Rewriting
F (δ,P0, . . . ,Pr ) as an LFT in δ:

F (δ,P0, . . . ,Pr ) = F22 + δF21(I − δF11)−1F12 (8)

such a test – inspired by the frequency-domain approach – boils down
to testing the eigenvalues of X = F11 − F12F−122 F21.
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
A first algorithm

1 Select the order r of the polynomial Lyapunov function,
2 Set i = 1 and define an elementary initial grid for the interval I

G1(I) = {δ1} , with δ1 ∈ I

3 Solve the LMI feasibility problem (7) for Gi (I),
4 If the problem is infeasible, increase r then go back to step 2 or stop

the algorithm (failure).
5 From the spectrum of X , compute validity intervals {I(δi )}i=1...N ,
6 If I ⊂

⋃
i=1...N I(δi ) : stability proved → end (success).

7 Select new points δi1, . . . , δiq /∈
⋃

i=1...N I(δi ) and update the grid:
Gi (I) → Gi+1(I) = Gi (I) ∪ {δi1, . . . , δiq}

Then go back to step 3.
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Extension to several parameters
The interval I is replaced by a normalized hypercube B = [−1 , 1]q

and we want to check that:

∀δ = [δ[1], . . . , δ[q]] ∈ B, F (δ,P) < 0 (9)

with:
F (δ,P) = F22 + F21∆(I − F11∆)−1F12 (10)

and:
∆ = diag(δ[1]In1 , . . . , δ[q]Inq ) (11)

Since F (0,P) < 0, conditions (9) are equivalent to :

∀∆ ∈ B∆, det(I − X∆) 6= 0 (12)

and can then be checked via standard µ tests...
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Extended algorithm

1 Select the order r of the polynomial Lyapunov function,
2 Set i = 1, normalize the parameters and define an elementary initial

grid for the unit hypercube B: G1(B) = δ1 ∈ B
3 Solve the LMI feasibility problem (7) for Gi (B),
4 If the problem is infeasible, increase r then go back to step 2 or stop.
5 If µ̄∆(X ) < 1 → end (success)
6 If µ

∆
(X ) ≥ 1 → update the grid with the calculated worst case δ∗i :

Gi (B) → Gi+1(B) = Gi (B) ∪ {δ∗i } and go back to step 3.
7 If µ

∆
(X ) < 1 : no conclusion can be given → split the hypercube into

smaller domains and perform µ tests on each sub-domains so as to
reduce the gap between upper and lower bounds. If stability cannot
still be proved, then increase r and go back to step 2.
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Some comments on complexity
By avoiding the KYP Lemma or its generalizations, the above
algorithms offer less conservative and cheaper solutions. However, the
proposed methods are not "LMI free" and there are still open issues:

when the order of the Lyapunov function must be increased, the
number of variables grows rapidly and lead to a numerically intractable
LMI problem,
when the unit ball to be cleared must be further gridded, the number
of constraints in the LMI problem might become too high...
the µ tests which are used to clear the unit ball might be conservative
and time-consuming.

At ONERA we then focus on possible ways of limiting:
the number of variables despite the possible use of high-order PDLF,
the conservativeness of the µ tests
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Robustness analysis vs LTV uncertainties

Time-varying Lyapunov functions
Application
Stability analysis of a single-axis satellite AOCS for which a
parameter varying controller has been designed. The parameter δ is
linked to the pointing error so that the controller exhibits a specific
behavior according to the pointing mode (rough or fine).

Stability is required ∀δ ∈ [0 , 0.994] and ∀δ̇ ∈ [−0.1 , 0.1].
The first Algorithm is applied and leads after a few seconds to the
following results...

PDLF order δ δ̇

0 [0 , 0.47[∪ [0.47 , 0.994] 0
1 [0 , 0.994] [−0.1 , 0.01]

2 [0 , 0.994] [−0.1 , 0.1]
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Conclusions

Conclusions

LFT modelling and robustness analysis have received a growing
attention at ONERA/DCSD over the past 10 to 15 years. Several
tools, with a high maturity level, are already available:

SMT : The skew µ Toolbox (version 3),

LFRT : The LFR Toolbox and its Simulink extension

Both packages can be downloaded from:

http://www.onera.fr/staff-en/jean-marc-biannic/

As is illustrated in this talk, current efforts are devoted to the
challenging tradeoff between precision and complexity. Resulting from
these efforts, new tools should soon appear in a unified toolbox.
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