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Introduction

In this presentation, a new method is proposed to compute dynamic
anti-windup compensators. The results are essentially based on:

a recent description of dead-zone nonlinearities using generalized
sector conditions,

the minimization of a performance objective over a restricted class
of input signals

An original three-step procedure is proposed:

Perform first a full-order anti-windup synthesis by convex
optimization,

Analyse the poles of the full-order compensator and select those
which are located inside the band-with of the nominal closed-loop,

Use the above selection to perform a reduced-order synthesis by
fixing the poles.
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Standard interconnection
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Design objectives

Assuming that a linear feedback controller K (s) was preliminarily designed,
the issue is now to compute a dynamic anti-windup compensator J (s):







ẋJ = AJ xJ + BJ w ∈ IR nJ

v =

[
v1

v2

]

= CJ xJ + DJ w ∈ IR pJ
(1)

such that:

the nonlinear closed-loop plant remains stable even for large reference
inputs (r) This is ensured by maximizing the size of a stability
domain in a given direction,

the behaviour of the nonlinear system remains as close as possible to
the nominal linear plant defined by L(s). This is ensured by
minimizing the energy of the error signal zp.

The bounded reference inputs r(t) ∈ Wp
τ (ρ) are generated with a

“step-like” profile as follows:

R(s) : τ ṙ + r = 0 , r(0) = r0 ∈ IR p , ||r0|| ≤ ρ (2)
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Nonlinear closed-loop equations (1/2)

The standard interconnection of slide 4 can be redrawn in a compact form
as follows:

zp

zw

v

Φ

J(s)
M(s)

where, under mild assumptions, the augmented plant M (s) has no
feedthrough terms and then reads :







ξ̇ = Aξ + Bφw + Bav , ξ =






r
xL

xG

xK




 ∈ IR nM

z = Cφξ ∈ IR m

zp = yr − yrLIN
= Cpξ ∈ IR p

(3)

6 / 23CONVEX CHARACTERIZATIONS OF ANTI-WINDUP CONTROLLERS



1. Problem statement 2. Main results 3. Application 4. Conclusion

Nonlinear closed-loop equations (2/2)

Then, the nonlinear closed-loop equations are finally obtained as :







ẋ =

[
A BaCJ

0 AJ

]

x +

[
Bφ + BaDJ

BJ

]

φ(z)

z =
[
Cφ 0

]
x

zp =
[
Cp 0

]
x

(4)

where the global state vector x can be partitionned as:

x =

[
ξ
xJ

]

=

[
r
ζ

]

∈ IR n with ζ =






xL

xG

xK

xJ




 ∈ IR n−p

Note that in our approach the reference input signal r(t) is viewed as a

part of the state-vector.
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Performance chatacterization (1/2)
Consider the above nonlinear closed-loop plant with a given
anti-windup controller J (s). If there exist matrices Q ∈ IR n×n,
S = diag(s1, . . . , sm), Z ∈ IR m×n and positive scalars γ and ρ
such that the following LMI conditions hold:

(
Q ⋆

[

ρ Ip 0

]

Ip

)

> 0 (5)

(⋆) +










[

A BaCJ

0 AJ

]

Q

[

Bφ

BJ

]

S 0

SDJ
T
[

BT
a 0

]

− Z −S 0
[

Cp 0
]

Q 0 −γ
2 Ip










< 0 (6)

(
Q ⋆

Zi +
[

Cφi
0
]

Q 1

)

> 0 , i = 1 . . . m (7)
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Performance chatacterization (2/2)

then, for all ρ ≤ ρ, and all reference signals r(t) ∈ Wp
τ (ρ), the

nonlinear interconnection is stable for all initial condition ζ0 in the
performance domain E(ρ) defined as follows :

E(ρ) =






ζ ∈ IR n−p/∀r ∈ Wp

τ (ρ),

[

r

ζ

]T

P

[

r

ζ

]

≤ 1






(8)

with P = Q−1.

Moreover, the energy of the tracking error zp satisfies :

∫
∞

0
zp(t)T zp(t) dt ≤ γ (9)
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Full-order anti-windup synthesis (1/3)

Let us now focus on the design issue. In such a case, the analysis
variables (Q,S and Z ) introduced in the above performance analysis
result, and the compensator variables AJ , BJ , CJ and DJ have to be
optimized simultaneously.

Consequently, the inequality (6) becomes a BMI and is therefore a priori
no longer convex.

Nevertheless, following a standard approach, in the full-order case, the
synthesis variables AJ , BJ ,... are easily eliminated thanks to the
projection lemma and convexity is then recovered.

This result is summarized in the following slide where Na denotes any

basis of the nullspace of BT
a and u(ρ) = [ρIp 0]T ∈ IR nM ×p.
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Full-order anti-windup synthesis (2/3)

There exists a compensator J (s) satisfying (5),(6),(7) iff
∃X = XT , Y = Y T ∈ IR nM ×nM , S = diag(s1, . . . , sm),
U , V ∈ IR m×nM such that the following LMI conditions hold:

u(ρ)T Xu(ρ) < Ip (10)
(

ATX + XA ⋆
Cp −γIp

)

< 0 (11)






N T
a (AY + YAT )Na ⋆ ⋆

Na −2S ⋆
CpYNa 0 −γIp




 < 0 (12)






X ⋆ ⋆
InM

Y ⋆
Ui Vi + Cφi

Y 1




 > 0 , i = 1 . . . m (13)
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Full-order anti-windup synthesis (3/3)

Since the compensator variables have disappeared in the above existence
conditions (11),(12), they have to be computed as follows:

1 Compute Q from X and Y :

Q =

(
Y I
N 0

)(
I X
0 M

)
−1

with M T N = InM
− XY

2 Fix Q, S , Z and solve the convex feasibility problem (6) w.r.t. the
design variables AJ , BJ , CJ and DJ :

(⋆) +







[
A BaCJ

0 AJ

]

Q

[
Bφ

BJ

]

S 0

SDJ
T
[
BT

a 0
]

− Z −S 0
[
Cp 0

]
Q 0 − γ

2
Ip







< 0 (6b)
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Reduced-order anti-windup synthesis

For practical reasons (due to implementation aspects), it is most often
required to limit the complexity of the anti-windup compensator.
Moreover, the full-order design approach does not permit to control the
location of the poles, which is often useful as well.

Our proposed reduced-order synthesis approach will permit to control
both the order of the compensator and the location of its poles by fixing
the AJ matrix. Moreover, the convexity is then ensured by the following
proposition:

Proposition : The BMI constraint (6) is convex as soon as the design
variables AJ and CJ are fixed.

which immediately follows from a standard change of variables:
B̃J = BJ S , D̃J = DJ S .
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Reduced-order compensators’ basis

Fixing the matrices AJ and CJ may appear as a difficult task for the
designer. However, fixing the poles is much more intuitive and finally
turns out to be equivalent. Let us decompose indeed J (s) as follows:

J (s) = M0 +

n1∑

i=1

Mi1

s + λi

+

n2∑

i=1

Mi2

s2 + 2ηiωi + ω2

i

(14)

and fix the matrices AJ and CJ as indicated below:

• AJ = diag (−λ1, . . . , −λn1
, A1, . . . , An2

)
• CJk

=
[

1 . . . 1
︸ ︷︷ ︸

n1

[1 0] . . . [1 0]
︸ ︷︷ ︸

n2

]
, k = 1 . . . pJ

with : Ai =

(
0 1

−ω2

i −2ηiωi

)

, i = 1 . . . n2

(15)

then, there exist BJ = f (Mij) and DJ = M0, such that:

J (s) = CJ (sI − AJ)−1BJ + DJ
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Reduced-order anti-windup algorithm

Anti-windup synthesis with fixed-dynamics

1 Perform a full-order synthesis:

1 Fix ρ and minimize γ under the LMI constraints (10), (11),
(12), (13).

2 Compute the Q matrix and the compensator J (s)

2 Perform a reduced-order synthesis:

1 Select a set of relevant poles from the full-order compensator,
2 build the matrices AJ and CJ of the reduced-order

compensator,
3 minimize γ under the LMI constraints (5), (6), (7) w.r.t the

variables Q, S , Z , B̃J , D̃J .
4 Compute BJ and DJ by inverting the aforementioned change

of variables.
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Open-loop model

The considered longitudinal fighter aircraft model is composed of two
states (α is the angle-of-attack and q the pitch rate):

(
α̇
q̇

)

=

(
−0.5 1
0.8 −0.4

)(
α
q

)

+

(
−0.2

5

)

δe

Note that a critical point in the flight envelope is chosen, for which the
plant is open-loop unstable (Mach = 0.3, H = 5000 ft).

A second-order actuator is then introduced (η = 0.6 and ω = 60 rad/s):

+

−

+

−

1

s

1

sδec
ω2

2ηω

δe

Lr Lp

Magnitude and rate saturations appear in limited integrators
(Lp = 20 deg and Lr = 80 deg/s).
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Closed-loop interconnection
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Closed-loop interconnection
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Design specifications

1
s

+

−
+

+
plantactuator

++

+

−P(s)A(s)

qK

R(s)

w

v1 v2

δec

α

G(s)

δe

αr

L(s)
αlin

J(s)

α − αlin

Design objective

Design a dynamic anti-windup controller J (s) such that the energy of the
tracking error α − αlin is minimized.
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Numerical results

Time-domain responses to a 20 deg step command in angle of attack.
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Without anti-windup

Unstable plant

The PID controller performs well as long as the amplitude of αr does not
exceed 7 deg. Beyond this value, a performance degradation appears and
stability is finally lost when the amplitude gets larger than 7.8 deg.
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Numerical results

Time-domain responses to a 20 deg step command in angle of attack.
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Stable plant, but very
poor performance level

The maximum value of αr is computed, for which the plant is guaranteed
to be stable. A very large value is obtained (29.6 deg), which means that
the stability domain is considerably enlarged.
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Numerical results

Time-domain responses to a 20 deg step command in angle of attack.
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Full-order anti-windup
(performance)

Good step response,
but small overshoot

The energy γ of the error signal α − αlin is minimized, where αlin is the
step response of the unsaturated closed-loop plant. A reasonably small
value is obtained (0.11)
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Numerical results

Time-domain responses to a 20 deg step command in angle of attack.
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Reduced-order anti-windup
with fixed poles

Fast response with
no overshoot

The poles of the full-order anti-windup controller are analyzed. A
selection is made and a reduced-order controller is computed.

−0.0013 − 0.45 − 1.80 − 4.21 − 5.53 ± 3.23j − 548 − 4750
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Static anti-windup
(performance)

Good time response,
but a bit slow

Finally, for the purpose of comparison, a static anti-windup controller is
synthesized. Such a design can be viewed as a special case of the
previous one. The controller here reduces to the feedthrough term DJ .
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Conclusion

In this talk, some new results have been presented to compute dynamic
anti-windup controllers by convex optimization of an original performance
objective over a restricted class of input signals. Both the full-order and
reduced-order cases have been considered.

The applicability of the results has then been demonstrated on a realistic
example which has also clearly highlighted the interest of :

the performance optimization compared to the maximization of the
amplitude of the input signal,

fixing the poles of the anti-windup controller (by selecting a part of
those which were placed by the full-order design) to avoid slow
dynamics.

Future works will be devoted to the improvement of the robustness
properties of the anti-windup compensators so as to facilitate their
implementation.
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