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Introduction

Most aerospace control applications require non stationary controllers
since the characteristics of the plant exhibit significant (and possibly fast
in some cases) variations over the operating domain.

(θ)K G (θ)

θ(   )t

+

-
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Today, control engineers still make an intensive use of standard
gain-scheduling techniques to solve the problem. Such approaches which
consist of an interpolation of local controllers have proved useful in
practice but typically suffer from a lack of theoretical guarantees.

In this context, LPV control techniques, which appeared in the early
1990’s, initially looked very promising since they apparently offer an
elegant path to bridge the gap between theory and practice...
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Organisation of the talk

In this talk, we will shortly discuss the following :

Standard LPV control

Polytopic design
LFT-based techniques

Back to gain-scheduling methods

Static gains and control structure
Stability guarantees ?

Dynamic inversion

Strengths and weaknesses
The LPV case

with aerospace illustrations and demo such as :

missile control

aircraft control
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Outline

1 LPV control
LPV systems
Polytopic and LFT models
Stability & performance
Polytopic or LFT design ?
Application to missile control

2 Gain scheduling techniques

3 Dynamic inversion

4 Demo

4 / 60LPV Control and Aerospace Applications(J-M. BIANNIC)



1. LPV control 2. "Gain-scheduling" 3. Dynamic inversion 4. Demo

LPV systems

A general definition
LPV systems are defined as follows :

{
ẋ = A(θ)x + B(θ)u
y = C(θ)x + D(θ)u

where θ = θ(t) is an independent parameter.
Quasi-LPV systems
If there exist matrices F and G such that :

Fθ = Gx

the above system is “quasi-LPV”.
Remark
Most plants in practice are quasi-LPV.
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LPV systems

LPV systems and non-linear models
The parameter-varying, nonlinear model :

{
ẋ1 = θx1 + x2

2

ẋ2 = x1x2 − x2

may also be rewritten in a quasi-LPV form :

(
ẋ1

ẋ2

)

=

(
θ x2

x2 −1

) (
x1

x2

)
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Polytopic and LFT models

Let us consider :

ẋ = A(θ)x , θ = [θ1, . . . , θr ]T ∈ P ⊂ IR

Polytopic models
This model is defined as the convex hull of the vertices of A(θ) :

Co {A1, A2, . . . , AN}
∆
=

{
∑i=N

i=1 αiAi αi ≥ 0 ,
∑i=N

i=1 αi = 1
}

⊃ {A(θ) , θ ∈ P}

A

A 1

A 2

3A

4

A 5
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Polytopic and LFT models

"Construction" of a polytopic model

Grid the operating domain
Compute A(θ) for each grid point
Compute the convex hull

Polytope reduction
The above approach may lead to complex models with numerous
vertices, the number of which can be reduced a posteriori...
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Polytopic and LFT models

Illustration of polytope reduction
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Polytopic and LFT models

From physical parameters to polytopic coordinates
Consider :

ẋ = A(v, v2)x = (M0 + vM1 + v2M2)x , v ∈ [5, 15]

θ

θ
θ

1

2

3 (15 , 225)

(10 , 75)

(5 , 25)

∀v ∈ [5, 15],

(v , v2) ∈ Co {θ1 , θ2 , θ3}

The polytopic coordinates are obtained from the linear program :






5α1 + 10α2 + 15α3 = v

25α1 + 75α2 + 100α3 = v2

α1 + α2 + α3 = 1
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Polytopic and LFT models

LFT Model
This model gives an exact representation of LPV systems whose
state-space entries rationally depends on the parameters :

A(θ) =





a11(θ) . . . a1n(θ)
. . . . . . . . .

an1(θ) . . . ann(θ)





where aij(θ) is a rational function of θ.

θr I r

θ1 I 1

θ2 I 2

M(s)

Θ
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Polytopic and LFT models

Example of LFT modeling







ẋ1 = x2

ẋ2 =
(

1 − θ2

2

)

x1 + θx2 + u

y = x1

m






ẋ1 = x2

ẋ2 = x1 + θ
(
x2 − θ

2 x1

)
+ u

y = x1

m






ẋ1 = x2

ẋ2 = x1 + w1 + u w1 = θz1

z1 = x2 − w2 w2 = θz2

z2 = 1
2 x1
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Polytopic and LFT models

LFT properties

Sums, products and compositions of LFTs remain LFTs. They can
be treated as objects and viewed as a rather straightforward
generalization of LTI systems.

The LFR Toolbox is essentially based on this notion of extended
object (generalizing the ss class).

LFT reduction
For a given LPV plant, the computation of a minimal size LFT object is a
very difficult, still unsolved in the general case, problem. Then, reduction
techniques need to be applied a posteriori. Two kinds of approach exist :

numerical reduction

step 1 : bloc reduction via genaralized Kalman approach
step 2 : global reduction via structured Grammians.

symbolic reduction (tree decompositions in graphs)
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Stability of LPV systems

Introduction
The LPV system defined by :

ẋ = A(θ)x , θ ∈ P

is stable on P if there exists X(θ) > 0, such that :

∀θ ∈ P , A(θ)T X(θ) + X(θ)A(θ) + θ̇
∂X

∂θ
< 0

This inequality ensures that V (x , θ) = xTX(θ)x is a decreasing function
along the plant trajectories. If X is chosen independently of θ, the system
is quadratically stable. We have :

∀θ ∈ P , A(θ)T X + XA(θ) < 0
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Stability of LPV systems

Quadratic stability of a polytopic model

∀θ ∈ P , A(θ)T X + XA(θ) < 0 , X > 0

m

∀αi ≥ 0,

i=N∑

i=1

αi = 1,

i=N∑

i=1

αi(A
T
i X + XAi) < 0 , X > 0

m

∀i = 1 . . . N , (AT
i X + XAi) < 0 , X > 0

We get a finite number of LMIs...
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Performance of LPV systems

The performance of LPV systems can be quantified via the L2 norm :
Definition : The L2 norm of H (.) is given by :

γ = sup
u 6=0

‖H (u)‖2

‖u‖2

Property : The L2 norm of an LPV plant is γ-bounded if there exists
X(θ) > 0 on P such that : ∀θ ∈ P , ∀θ̇ ∈ V :





A(θ)T X(θ) + X(θ)A(θ) + θ̇ ∂X(θ)
∂θ

X(θ)B(θ) C(θ)T

B(θ)T X(θ) −γI D(θ)T

C(θ) D(θ) −γI



 < 0

16 / 60LPV Control and Aerospace Applications(J-M. BIANNIC)



1. LPV control 2. "Gain-scheduling" 3. Dynamic inversion 4. Demo

Performance of LPV systems

Remark
With a quadratic Lyapunov function, the inequality reduces to :

∀θ ∈ P ,





A(θ)T X + XA(θ) XB(θ) C(θ)T

B(θ)T X −γI D(θ)T

C(θ) D(θ) −γI



 < 0

which is a straightforward generalization of the H∞ norm of LTI models.

The above constraint characterizes the quadratic H∞ performance,

No bound on the rate-of-variations is taken into account here.
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Performance of LPV systems

Quadratic H∞ performance of a polytopic model
As for stability, checking the performance of a polytopic model reduces to
test on the vertices of the polytope :

∀i = 1, . . . N ,





AT
i X + XAi XBi CT

i

BT
i X −γI DT

i

Ci Di −γI



 < 0

18 / 60LPV Control and Aerospace Applications(J-M. BIANNIC)



1. LPV control 2. "Gain-scheduling" 3. Dynamic inversion 4. Demo

Performance of LPV systems

Performance of an LFT model
An extension of the small-gain theorem is used :

M(s)

Θ

γI / γI / 

L
−1

L

The L2 norm of Fu(M (s), Θ) is γ-bounded if there exists an invertible
matrix L commuting with Θ and such that :

∥
∥
∥
∥

(
L 0
0 1√

γ
I

)

G(s)

(
L−1 0

0 1√
γ

I

)∥
∥
∥
∥

∞
< 1
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LPV synthesis

Introduction
We search for a controller, the structure of which copies that of the plant.

Plant : G(θ)

{
ẋ = A(θ)x + B(θ)u
y = C(θ)x + D(θ)u

Controller : K (θ)

{
ẋK = AK (θ)xK + BK (θ)y
u = CK (θ)xK + DK(θ)y

Illustration

(θ)K G (θ)

θ(   )t

+

-

uref y
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LPV synthesis

Fundamental result
Whatever the chosen model (polytopic or LFT), unlike robust control,
the computation of an LPV controller boils down to a convex problem.

Polytopic case

Ω2
Ω3

Ω4

P1

P2
P3

P4

P5

Ω5

Ω1

y θ (t)

z1 w1

u

P (�) =

i=N

P

i=1

�

i

(�)P

i


(�) =

i=N

P

i=1

�

i

(�) 


i

� =

i=N

P

i=1

�

i

(�) �

i

; �

i

(�) � 0 ;

i=N

P

i=1

�

i

(�) = 1
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LPV synthesis

Polytopic case

Vertices of the design model : Pi =





Ai B1i B2i

C1i D11i D12

C2 D21 0





There exists a polytopic controller such that the quadratic H∞
performance of the closed-loop is ensured iff there exist R and S such
that :

N T
R





AiR + RAT
i B1i RCT

1i

BT
1i −γI DT

11i

C1iR D11i −γI



 NR < 0 , i = 1, . . . , N

N T
S





AT
i S + SAi SB1i CT

1i

BT
1iS −γI DT

11i

C1i D11i −γI



 NS < 0 , i = 1, . . . , N

with :
NR = Ker

(
BT

2 DT
12

)
, NS = Ker

(
C2 D21

)
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LPV synthesis

LFT case

wθzθ

wkθ
zkθ

P(s)

K(s)

(t)Θ

Θ(t)

uy

wz 11

Θ(t)
(t)Θ

zK θ w
θK

zθ wθ

wK θθKz

P(s)

I

I

K(s)

uy

z w 11

The repeated Θ block commutes with a class of non necessarily diagonal
matrices. This fact implies convexity in the LFT case.
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LPV synthesis

Methodology-oriented Extensions

Performance criteria,

Bounds on the rate-of-variations of parameters

Uncertainties

Technical extensions

Change of variables,

LMIs rewritting via

introduction of new variables,
Relaxation techniques,
Linearization techniques
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LPV synthesis

Bound on the rate-of-variations A rigorous approach consists of using
PDLF. For example :

X(θ) = X0 + θ1X1 + . . . + θrXr

but his also introduces numerous variables...
In practice, one prefers an approximated approach which consists of
modifying the design model.
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LPV synthesis

Bound on the rate-of-variations
The parameter is filtered via a low-pass function :

F(s) = diag(f1(s), . . . , fr(s)) , fi(s) =
1

1 + τis

y u
G(s)

Θ F(s)

z w

The modified model converges towards the initial one when :
{

τi → 0

Θ̇(t) → 0
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LPV synthesis

Bound on the rate-of-variations

DESIGN PROCEDURE

1 Determination of an LFT-based design model,

2 Model transformation via parametric filtering,

3 Conversion to a polytopic model,

4 Polytopic design,

5 Controller reconstruction,

6 Stability and performance analysis on the initial model,

Successful analysis –> End,
Failure –> Reduce τi and back to step 2.
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Application to missile control

Missile model







(
α̇
q̇

)

=

(
Zα 1
Mα 0

) (
α
q

)

+

(
Zδ

Mδ

)

δ

η = Nαα + Nδδ

with
Mα = KqM 2(amα2 + bm |α| + cm) = Mα0

+ θMα1

Zα = KαM (anα2 + bn |α| + cn) ≈ aZ Mα + bZ

Nα = KzM 2(anα2 + bn |α| + cn) ≈ aN Mα + bN

Zδ = KαM cos αdn

Mδ = KqM 2dm

Nδ = KzM 2dm
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Application to missile control

Missile model






(
α̇
q̇

)

= (A0 + θA1)

(
α
q

)

+

(
Zδ

Mδ

)

δ

η = (C0 + θC1)

(
α
q

)

+ Nδδ

with :

A0 =

(
aZ Mα0

+ bZ 1
Mα0

0

)

A1 =

(
aZ Mα1

0
Mα1

0

)

C0 =
(
aN Mα0

+ bN 0
)

C1 =
(
aN Mα1

0
)
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Application to missile control

Missile model
We finally obtain the following LFT model :

θ

za
δ

q
G(s)

with :

G(s) =








aZ Mα0
+ bZ 1 aZ Zδ

Mα0
0 1 Mδ

Mα1
0 0 0

aN Mα0
+ bN 0 aN Nδ

0 1 0 0
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Application to missile control

Nominal design model

θK(s,  )

W   (s)δ
.

W   (s)ref

W   (s)p

Wa Wq

G(s)
A(s)

θ

+

-

+ -

eazc

q
az

δ

cδ δ

θ zθ
w

.

+

+
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Application to missile control

Parametric filtering
wθ is replaced by :

w̃θ =
wθ

1 + τs
=

θzθ

1 + τs

Ideally we would like :

w̃θ =
θ

1 + τs
zθ

To converge to this relation, the filter should be fast with respect to zθ.
For this application there exists a relationship between zθ and the normal
acceleration for which a first-order reference model with a time constant
τr = 0.35 s is imposed.
Then we choose τ ≤ 0.35.
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Application to missile control

Performance index as a function of τ
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Application to missile control

Simulation model

alpha

theta

Mal

parameter generator

delta

alpha

az

q

missile

theta

y

deltac

controller

Malp

al

dp

t

az
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delta
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Mux

[tsim,azc]
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Application to missile control

Nonlinear simulation
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Outline

1 LPV control

2 Gain scheduling techniques
General principle
Recent improvements

3 Dynamic inversion

4 Demo
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General principle

Define a grid of the operating domain to be covered,

Trim and linearize the plant about each grid point,

Perform local design via linear techniques,

Interpolate local controllers to get the global.

1

H2

H3

H4

H5

V2 V3 V4 V5 V6

Ki,j Ki,j+1

Ki+1,j+1i+1,jK

K(V,H)

H

V

V

1

H
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Some comments

The above approach has been successfully applied on aerospace
applications for 30 years.

Standard grid combines slowly varying parameters (mach and
altitude) with fixed ones such as the mass, the center-of-gravity
location, the configuration...

In contrast with LPV control, no stability proof can be given a priori
between grid points. Critical problems may appear in case of fast
varying parameters (induced dynamics),

The success of gain-scheduling approaches is well-established thanks
to :

a good behavior observed in practice,
a low conservatism when compared to LPV techniques
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Recent improvements

Born in the 60’s and successfully applied in the aerospace industry for
years, gain scheduling techniques offer two significant advantages when
compared to LPV methods :

they are numerically cheap, which makes tuning easier,

they are not conservative.

In return, the aforementioned weak points have justified recent work in
the domain :

interpolation of dynamic compensators (limited impact when the
controller can be structured)

interpolation with stability proof,

gain-scheduling for quasi-LPV plants ("velocity-based
linearization").
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Interpolation with stability proof

Illustrations

Validity of compensator Ki(s)
min θmax

Pi−1 Pi+1Pi (Calculation point for Ki(s))

θ

A priori defined trajectory

i

Pi+1

Pi−1

x2

1x

Trajectory segments inside the intersection of two consecutive ellipsoids

Polyedral validity domain of the polytopic model

Stability ellipsoid

P
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Interpolation of locally robust controllers

i,jθ

1θ1θ i 1θ i+1

2θ i

2θ i+1

1θ i
(1−δ)

1θ i
(1+δ)

2θ i

2θ i
(1−δ)

(1+δ)

Σ2

J-M. Biannic, C. Roos, A. Knauf. Design and analysis of

fighter aircraft flight control laws. European Journal of
Control, 2006.
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Controllers validation

M(s)

Θ(t)

C

u

^

+

−
θ

θ

u

^

Linear interpolation

∆

Gain scheduling by interpolation

Standard form for ...

(based on a polytopic approach)
Modified LPV design

of locally robust controllers

possibly including  uncertainties
+ LFT model  of the plant

robustness analysis

with

A(s)

ec

a

xr

x

1/s

x

x

K(  )y

W   (s)ref
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Outline

1 LPV control

2 Gain scheduling techniques

3 Dynamic inversion
Introduction
Fighter aircraft example
Strengths and weaknesses
LPV case

4 Demo
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Introduction (1/2)

Dynamic inversion consists of "erasing" the nonlinear elements of a plant
such that a robust linear technique can then be applied. For the purpose
of illustration consider the nonlinear but scalar model :

ẋ = f (x) + g(x)u

and define the linearizing input v such that :

u =
1

g(x)
(v − f (x))

then :
ẋ = v

There remains to compute K (s) such that x converges to xc :

v = K (s)

[
xc

x

]
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Introduction (2/2)

In most cases, the inversion is not perfect since :

u = sat

(
1

ĝ(x)
(v − f̂ (x))

)

then it follows :
ẋ = (1 + δ(t))v + w

The linear controller K (s) must be robust against parametric
uncertainties and external perturbations. Several techniques can be used.
Note that a P.I. structure :

v = Kp(xc − x) +
Ki

s
(xc − x)

generally offer a good robustness level. Moreover, this type of controller

eliminates static parts of external perturbations.
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Example (1/4)

Fast longitudinal dynamics is given by :

{
α̇ = q + Z

J q̇ = W + Bδe
(1)

with :






Z = g

V cos β
(cos α cos θ cos φ + sin α sin θ + ãz cos α − ãx sin α) − pi tan β

W = qdSL(CMα
(Ma)α + qLCMq /V ) + (Jzz − Jxx)pr + Jxz(r2

− p2)
B = qdSLCMδ

(Ma)

(2)
and {

pi = p cos α + r sin α
ãx = gaxm + λg(q2 + r2)
ãz = gazm + λg(q̇ − pr)

(3)
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1. LPV control 2. "Gain-scheduling" 3. Dynamic inversion 4. Demo

Example (2/4)

Two nested loops
{

α̇ = q + Z
J q̇ = W + Bδe

(4)

The structure of system (4) can be divided as follows :







α̇ = q + Z
u = q

y = α
&







J q̇ = W + Bδe

u = δe

y = q
(5)

This new structure is interesting since we now have scalar models.
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Example (3/4)

Outer loop : angle-of-attack (α) control :







α̇ = q + Z
u = q

y = α
(6)

If q can be controlled such that :

q = −Z + kp(αc − α) + ki

∫

(αc − α) (7)

alors :
α

αc

=
kps + ki

s2 + kps + ki

(8)

With kp = 2ξcωc et ki = ω2
c and filtering αc by a first-order feedforward

system (to compensate de stable zero −Ki/kp) we obtain the desired

response on α.
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Example (4/4)

Inner loop : pitch rate (q) control







J q̇ = W + Bδe

u = δe

y = q
(9)

The objective is now to drive q such that the constraint (7) imposed by
the outer-loop is satisfied. To achieve this, we invert (9) :

δe = B−1

(

−W +
J

τc

(qc − q)

)

then :
q

qc

=
1

1 + τqs

where τq must remain smaller than ωc to ensure time scale separation.
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Strengths and weaknesses

© treats a large class of nonlinear plants

© treats the actual problem

© automatically adapts to the operating point

© easily takes varying specifications into account

© easy to tune

© a posteriori analysis possible in the LPV case

§ unstable zeros

§ saturations

§ inversion errors

§ state feedback ⇒ estimation

§ flexible modes

§ analysis is difficult in the general case
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LPV case (1/2)

Consider the LPV plant :

{
ẋ = A(θ)x + Bu
z = Lx

(10)

where only A is assumed to be parameter-varying.

This system may be rewritten :

{
ẋ = A0x + w(x , θ) + Bu
z = Lx

(11)

with :
w(x , θ) = (A(θ) − A0) x (12)
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LPV case (2/2)

Using the linearizing control input :

u = v − B−1w(x , θ) (13)

the initial LPV plant becomes LTI :
{

ẋ = A0x + Bv
z = Lx

(14)

so that the problem may now be treated by a standard LTI approach :

v = H (s)zc + K (s)x

Finally, the LPV control law is :

u = H (s)zc +
(
K (s) − B−1(A(θ) − A0)

)
x

The closed loop can then be written in an LPV format for which an LFT

model is available. Then, several analysis techniques can be used to

check stability and performance...
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Outline

1 LPV control

2 Gain scheduling techniques

3 Dynamic inversion

4 Demo
Model description
Specifications
Dynamic-inversion based solution
MATLAB Demo
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Model description (1/3)

We consider a model which represents the behavior of a fast aircraft on a
large operating domain. The speed range is [100 300] m/s.







α̇ = zαα
︸︷︷︸

wα

+q + wpert

q̇ = mαα + mqq
︸ ︷︷ ︸

wq

+mδδm
(15)

with : 





zα = −(1 + 0.6θzα
)(1.3 + 0.7θv)

mα = 0.8 + (θmα
+ 1.5δmα

)(5 + 4θv)
mq = −(1 + 0.35θmq

)(0.9 + 0.45θv)
mδ = −40(1 + 0.25δmδ

)(1 + 1.15θv + 0.35θ2
v)

(16)

where θzα
, θmα

, θmq
et θv denote measurable parametric variations, while

δmα
et δmδ

correspond to parametrric uncertainties.
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Model description (2/3)

A SIMULINK view
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Model description (3/3)

Actuator model
The actuator is described by a second-order dynamic model with
pulsation ωa = 60 rad/s and damping ξa = 0.6. Without saturations we
have :

δmr
=

ω2
a

s2 + 2ξas + ω2
a

δmc

With saturations (rate limitations), we use :

Limitation de vitesse de braquage

Lr = 80 deg/snon modélisée car peu active

Limitation d’amplitude de braquage
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Specifications

angle-of-attack tracking with a second-order reference model with
ξref = 0.7 and varying pulsation ωref :

V = 100m/s ⇒ ωref = 4
V = 300m/s ⇒ ωref = 10

α max = 30 deg
Avoid saturations.

SIMULINK for the reference model

vitesse normalisée
theta_v = 0.01*(v−200)
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1. LPV control 2. "Gain-scheduling" 3. Dynamic inversion 4. Demo

Dynamic-inversion based solution

The proposed solution is based on chapter 3. A SIMULINK

implementation is given next.

SIMULINK view of the control law
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MATLAB Demo

We conclude the talk by a MATLAB demo to illustrate the
following :

open-loop properties,

implementation of a parameter-varying controller,

closed-loop properties without saturarions,

effects of speed variations,

effects of saturations.
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Conclusion

Despite their theoretical advantages, standard LPV techniques remain
rarely used in aerospace applications because :

they are still very conservative,

they lead to numerically intractable problems as soon as one tries to
reduce conservatism,

in practice, they are still limited to a maximum of 2 or 3 parameters.

Further research efforts are then clearly required to solve the above
issues. It is also believed that forthcoming works on :

enhanced gain-scheduling techniques

LPV-based dynamic inversion methods

in combination with advanced robustness analysis methods will offer nice
alternatives for aerospace control applications in the future...
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